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Preface

A remarkable fact in mathematics is the accordance between algebra
and geometry: since the time of Descartes it is possible to express geo-
metric phenomena in terms of numbers. And after doing calculations
with these numbers, we can draw geometric conclusions from them.
However, soon it appeared that, for instance, a circle and a line outside
that circle have ‘imaginary’ meeting points: points that have imaginary
coordinates but can not be found in the figure.

By extending each line to a Gauss- or Argand-plane, there is a pos-
sibility to add geometric meaning to these points. The big advantage
again is the power of complex arithmetic that becomes available. But
for the geometric imagination, complex geometry is very difficult if not
impossible. And above all: not very satisfactory.

Karl von Staudt found a brilliant way to visualize imaginary geometric
elements, in the real plane as well as in space (see [Staudt1860]). Felix
Klein simplified his method ([Klein1872], which is reproduced in chap-
ter 15 of the appendix). In our book we elaborate on the Klein-method.
But it should be noted beforehand that the methods of Von Staudt and
Klein cannot be thought of as the ultimate idea of imaginary elements
either (see [Boer2012]). The reason that I took the trouble to write
about this subject is not so much to add to the mathematical knowledge
as well as to propose an alternative for the remarkable occurrence of
complex numbers in various branches of physics. I recommend physi-
cists to take notice of section 3.3 where the essential application to
physics is presented.

In part I we develop 1-dimensional geometry of complex elements, in



the second part dimension 2 is treated, and in the third part dimension
3. Mathematicians with sufficient background can skip the first two
parts. Much emphasis is on the connection between the Klein-space
and the numerical one.

The reader is supposed to be familiar with elementary projective geom-
etry and linear algebra. Good guides are [Lipschutz1991] for algebra
and [Ayres1967] for projective geometry, or [Baer2005] for both.

There are several ways to develop projective geometry. The easiest
way is no doubt the numerical one which is summarized in chapters 6
and 10. It is, however, possible to develop projective geometry by syn-
thetic geometric means. Namely the vector space can be constructed
by a pure synthetic geometric procedure. The first attempt to this was
done by Von Staudt, see [Staudt1860]. To my knowledge Artin was the
first to give a full treatment of this construction, see [Artin1957]. In
[Boer2009] you find a complete synthetic axiom system, as well as the
Artin-construction of the vector space.

This book has evolved from a series of lectures I gave on the subject to
a group of colleagues in the years 2016-2018. I am truly honoured and
grateful for their patience and support. In particular Matthias Lerch-
miiller, who simultaneously treated the same subject from the point of
view of Van Staudt, inspired me and gave essential help. Bernard As-
selbergs took the time to carefully read parts 1 and 2 of the manuscript
and gave many corrections and hints for improvement. Thanks a lot
Bernard! And last but not least my dear wife, Johanna, who is always
there, loving and supporting: to her I dedicate this work.

Lou de Boer, autumn 2020
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